反三角函数的导数是什么?
反三角函数导数:(arcsinx)'=1/√(1-x²);(arccosx)'=-1/√(1-x²);(arctanx)'=1/(1+x²);(arccotx)'=-1/(1+x²)。
反三角函数求导公式 (arcsinx)'=1/√(1-x²)(a。
反三角函数怎么导数?
反三角函数(inverse trigonometric function)是一类初等函数。
指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。
这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数。
反三角函数导数是什么?
反三角函数求导公式:反正弦函数的求导:(arcsinx)'=1/√(1-x^2)反余弦函数的求导:(arccosx)'=-1/√(1-x^2)反正切函数的求导:(arctanx)'=1/(1+x^2)反余切函数的求导:(arccotx)'=-1/(1+x^2)反三角。
反三角函数的导数公式有哪些
反三角函数求导公式 反正弦函数的求导:(arcsinx)'=1/√(1-x^2)反余弦函数的求导:(arccosx)'=-1/√(1-x^2)反正切函数的求导:(arctanx)'=1/(1+x^2)反余切函数的求导:(arccotx)'=-1/(1+x^2)反。
反三角函数求导公式?
反函数的导数:y=arcsinx,那么,siny=x,求导得到,cosy*y'=1 即y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)反三角函数介绍 反三角函数是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从。