arcsinx的导数
arcsinx的导数是:y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²),此为隐函数求导。
过程如下:y=arcsinx y'=1/√(1-x²)反函数的导数:y=arcsinx 那么,siny=x 求导得到,cosy*y'=1 即y'。
arcsinx的导数是什么?
arcsinx的导数1/√(1-x^2)。
导数(Derivative),也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0。
arc sinx的导数是什么?
arcsinx的导数是y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)推导过程说明:y=arcsinx y'=1/√(1-x²)反函数的导数:y=arcsinx,那么,siny=x,求导得到,cosy*y'=1 即y'=1/cosy=1/√[。
求arcsinx的导数
请问过程是怎样的?y=arcsinx y'=1/√(1-x^2)反函数的导数:y=arcsinx 那么,siny=x 求导得到,cosy *y'=1 即 y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x。